Question Number	Answer		Mark
*2 (a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Only one photon can transfer energy to a single electron Or a photon transfers all of its energy to a single electron	(1)	
	Or a photon transfers an of its energy to a single electron	(1)	
	Photon energy depends on frequency		
	Or photon energy = hf	(1)	
	Therefore photons must have a frequency greater than or equal to the minimum frequency (threshold frequency) in order to provide sufficient energy		
	Or photon energy must be greater than work function	(1)	
	Light with a greater intensity supplies more photons per second	(1)	
	So more electrons can be emitted per second, causing a greater current	(1)	
	MP4 and MP5 can both be awarded if 'per second' mentioned at least once.		5
2 (b)	Use of $E = hf$		
	Use of energy divided by 1.6×10^{-19} C	(1)	
		(1)	
	Maximum electron ke = 0.49 (eV)	(1)	
	Example of calculation	(1)	
	$Max ke = 6.63 \times 10^{-34} Js \times (7.52 \times 10^{14} Hz - 6.34 \times 10^{14} Hz) \div 1.6 \times 10^{-19} C$ = 0.49 eV		3
	Total for question		3

Question	Answer		Mark
Number			
3(a)	Lowest / minimum frequency (of light / photons incident on a metal) that will cause electrons to be emitted (from surface) Or the frequency of (light / photons) that will cause electrons to be emitted (from the surface of a metal) with zero kinetic energy (accept only just emitted)	(1)	1
3(b)	Conversion of eV to J Use of $E = hf$ $f = 5.5 \times 10^{14}$ Hz Example of calculation $\varphi = (2.28 \text{ eV} \times 1.6 \times 10^{-19} \text{ C})$ $= 3.65 \times 10^{-19}$ J	(1) (1) (1)	3
	$f = 3.65 \times 10^{-19} \text{ J} / 6.63 \times 10^{-34} \text{ J s} = 5.50 \times 10^{14} \text{ Hz}$ Total for Question		4

Question	Answer		Mark
Number			
4(a)	$\underline{\max}$ kinetic energy Or ke _{max}	(1)	
	joule/J Or electronvolt/eV	(1)	
	Or	(1)	
	stopping potential Or $V_{\rm s}$		•
	volt/V	(1)	2
	(Unit mark can be scored if no quantity given.		
	If incorrect quantity given no marks awarded but KE/energy in		
	joules/eV scores MP2)		
4(b)			
.(0)	Idea that one photon is absorbed by one electron	(1)	
		(-)	
	Photon energy given by $E = hf$		
	Or photon energy increases with frequency	(1)	
	The idea that there is a minimum energy needed for emission of a		
	(photo)electron	(1)	
	(So) emission of electrons only occurs if frequency of light greater		
	than the threshold frequency		
	Or threshold frequency is the minimum frequency for the emission of		
	(photo)electrons	(1)	4
			(
	Total for question		6

Question Number	Answer		Mark
5(a)	Photon – quantum/packet of something relevant e.g. light, radiation, any other named e-m radiation, energy	(1)	
	(quantum/packet) of <u>electromagnetic</u> energy/radiation/waves (dependent mark)	(1)	2
5(b)	Use of $(20.66 - 18.70) \times 1.6 \times 10^{-19}$	(1)	
	Use of $E = hf$ (with energy in eV or J) $f = 4.7 \times 10^{14} \text{ Hz}$	(1) (1)	3
	$\frac{\text{Example of calculation}}{f = (20.66 - 18.70) \times 1.6 \times 10^{-19} / 6.63 \times 10^{-34}}$ f = 4.73×10 ¹⁴ Hz		C
5(c)	From kinetic energy of atoms	(1)	1
5(d)	Diffraction	(1)	
	Light spreads (sideways) as it passes through the slit	(1)	
	Narrower slit causes more diffraction/spreading		
	Or diffraction increasing as gap width gets closer to wavelength	(1)	
			3
	Total for question		9

Question Number	Answer		Mark
6(a)	Quantum of Or (discrete) packet of Or discrete quantity of	(1)	
	(To score the mark must refer to something relevant e.g. light / energy) Of <u>electromagnetic</u> radiation/energy	(1)	2
*6(b	(QWC – Work must be clear and organised in a logical manner using technical		
	wording where appropriate)	(1)	
	describe relevant interaction between single photon and single electron	(-)	
	photon energy depends on frequency Or reference to $E = hf$ (must be	(1)	
	link to photons/light)	(1)	
	if photon energy greater than work function, electron emitted (immediately)	(1)	
	whereas for waves energy could build up Or with waves that the electron can absorb energy continuously or over time	(1)	5
	so any frequency should work Or but this build up doesn't happen		
6(c)(i)	Use of $4.3 \times 1.6 \times 10^{-19}$	(1)	
		(1)	
	Use of $E = hf$ $f = 1.0 \times 10^{15} \text{ Hz}$	(1)	3
	Example of calculation $E = 4.3 \text{ V} \times 1.6 \times 10^{-19} \text{ C}$		
	$E = 4.3 \text{ V} \times 1.6 \times 10^{-19} \text{ C}$		
	$= 6.9 \times 10^{-19} \text{ J}$		
	$6.9 \times 10^{-19} \text{ J} = 6.63 \times 10^{-34} \text{ Js} \times f$ $f = 1.0 \times 10^{15} \text{ Hz}$		
6(c)(ii)	$\begin{array}{c} J = 1.0 \times 10 \text{Hz} \\ \text{Ultraviolet} \end{array}$	(1)	
5(c)(H)	Accept ultraviolet even if frequency in c(i) is incorrect, but allow ecf	(1)	
	from candidate's value of frequency to appropriate part of		
	electromagnetic spectrum		
	Total for question		11

Question	Answer		Mark
Number			
7(a)(i)	Effect: (Max) (K)E/speed/velocity (of electrons) increases (accept		
	electrons move faster)	(1)	
	Explanation : (Increasing frequency) increases energy of photon		
		(1)	2
	If there is reference to both energy and number of electrons		
	increasing, do not award the first mark.		
7(a)(ii)	Effect: Number (of electrons)/sec emitted increases / rate of		
	(electron) emission increases (accept reference to increased current)	(1)	
	Explanation: There are more photons/sec	(1)	2
	Either mark may be awarded without reference to '/sec' or rate, but only award 2 marks for the rate effect and explanation if there is reference to rate or '/sec' at least once		
	If there is reference to both energy and number of electrons		
	increasing, do not award the first mark.		

(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
 Observation from photoelectric effect (max 1 mark) No of electrons emitted depends on intensity / doesn't depend on frequency Emission of electrons is instantaneous / no time delay Minimum frequency for electron emission (i.e. reference to threshold frequency, not work function) (Max) electron (kinetic) energy depends on frequency / doesn't depend on intensity (accept reference to stopping potential) 	(1)	
Explanation (max 3 marks):		
Particle nature Reference to $E=hf$ or quanta of energy / packets of energy / photons	(1)	
Use to explain observation One photon releases one electron Or Electron release requires minimum energy / work function energy Or (Max) Electron energy is photon energy – work function energy Or $\frac{1}{2}mv^2 = hf - \varphi$	(1)	
Wave nature Wave energy depends on intensity Or Energy spread over whole wave Or Energy supply is continuous (accept energy can build up)	(1)	
Use to explain observation So more intense light should give greater (K)E (which it doesn't) Or If given enough time electrons eventually released (which doesn't happen) Or a delay could be expected before electron release (which doesn't		
happen)	(1)	4
	 technical wording where appropriate) Observation from photoelectric effect (max 1 mark) No of electrons emitted depends on intensity / doesn't depend on frequency Emission of electrons is instantaneous / no time delay Minimum frequency for electron emission (i.e. reference to threshold frequency, not work function) (Max) electron (kinetic) energy depends on frequency / doesn't depend on intensity (accept reference to stopping potential) Explanation (max 3 marks): Particle nature Reference to <i>E=hf</i> or quanta of energy / packets of energy / photons Use to explain observation On ephoton releases one electron Or Electron release requires minimum energy / work function energy Or (Max) Electron energy is photon energy – work function energy Or fMax y Electron energy is photon energy – work function energy Or Energy spread over whole wave Or Energy supply is continuous (accept energy can build up) Use to explain observation So more intense light should give greater (K)E (which it doesn't) Or If given enough time electrons eventually released (which doesn't happen) 	technical wording where appropriate) Observation from photoelectric effect (max 1 mark) • No of electrons emitted depends on intensity / doesn't depend on frequency • Emission of electrons is instantaneous / no time delay • Minimum frequency for electron emission (i.e. reference to threshold frequency, not work function) • (Max) electron (kinetic) energy depends on frequency / doesn't depend on intensity (accept reference to stopping potential) (1) Explanation (max 3 marks): Particle nature Reference to $E=hf$ or quanta of energy / packets of energy / photons (1) Use to explain observation One photon releases one electron Or Electron release requires minimum energy / work function energy Or (Max) Electron energy is photon energy – work function energy Or $\frac{1}{2}mv^2 = hf - \varphi$ (1) Wave nature Wave energy depends on intensity Or Energy spread over whole wave Or Energy supply is continuous (accept energy can build up) (1) Use to explain observation So more intense light should give greater (K)E (which it doesn't) Or If given enough time electrons eventually released (which doesn't happen) Or a delay could be expected before electron release (which doesn't happen) (1)

Question Number	Answer		Mark
8 (a)	(Atoms/electrons) gain energy	(1)	
	(Electrons/atoms) move to higher energy levels/states OR level/state above ground state	(1)	2
	'electron shells' not sufficient		
8(b)(i)	Electrons/atoms move to lower energy level/state (accept ground state) Or Electrons/atoms moves down from a higher energy level/state	(1)	
	Emit photons Or emit quanta/packets of electromagnetic radiation (emit radiation not sufficient)	(1)	2
8(b)(ii)	Atoms/electrons exist in certain/discrete/specific energy (levels) (do not allow 'fixed')	(1)	
	Only certain energy changes are possible Or Only certain/discrete/ fixed amounts of energy are released (accept reference to 'amounts of eV' for energy)	(1)	
	Refer to $E = hf$	(1)	3
8(b)(iii)	(Phosphor) has different energy level (spacing)s Or different elements have different energy level (spacing)s (Not shells, not different number, not configuration)	(1)	1
	Total for question		8

Question Number	Answer		Mark
9(a)(i)	14 1	(1) (1)	2
	$\frac{\text{example of calculation}}{f = \frac{3 \times 10^8 \text{ m s}^{-1}}{6.56 \times 10^{-7} \text{ m}}}$ f = 4.57 × 10 ¹⁴ Hz		
9(a)(ii)	Correct use of $1(eV) = 1.6 \times 10^{-19}(J)$ to convert eV to J or J to eV e.g. $\frac{3.03 \times 10^{-19}}{1.6 \times 10^{-19}} = 1.9 (eV)$	(1)	
	Transition from (-)1.5 (eV) to (-)3.4 (eV)	(1)	2
9 (b)	effect	(1)	2
	Total for question		6